Wednesday, 29 June 2016

Coffee Bean origin & the effect of temperature on roasted coffee beans


Abstract

Coffee is prepared by the extraction of a complex array of organic molecules from the roasted bean, which has been ground into fine particulates. The extraction depends on temperature, water chemistry and also the accessible surface area of the coffee. Here we investigate whether variations in the production processes of single origin coffee beans affects the particle size distribution upon grinding. We find that the particle size distribution is independent of the bean origin and processing method. Furthermore, we elucidate the influence of bean temperature on particle size distribution, concluding that grinding cold results in a narrower particle size distribution, and reduced mean particle size. We anticipate these results will influence the production of coffee industrially, as well as contribute to how we store and use coffee daily.

Second only to oil, coffee is the most valuable legally traded commodity. There are two biologically dissimilar species of coffee grown for consumption; Coffea canephora (robusta) and Coffea arabica (arabica)1. Whilst robusta is both less chemically complex and less flavoursome than arabica, it benefits from being feasibly grown at low altitude and is pest resistant. However, over 60% of the global coffee consumption is of arabica. In 2014, Brazil and Colombia combined to produce over 3.5 million tonnes of green arabica2, with Ethiopia and other African and Central American producers also making significant contributions. Including countries like Vietnam which almost exclusively produces robusta, global coffee production amounts to 8.5 million tonnes annually.

With the exception of unusual green coffee medicinal and dietary preparations, coffee is not typically consumed as a solid but rather an extract from the roasted seed. Coffee beans are imported, roasted, ground and then brewed (including instant coffee) in coffee shops and homes. In such a valuable industry, the quality and yield of the product is paramount. However, there are many variables that influence the flavour, yield and overall enjoyment of this mass consumed beverage. The challenges associated with ensuring coffee quality can be divided into two categories i) variables associated with the country of origin and ii) variables associated with consumption.

Besides typical botanical influences including climate and altitude, there are two general considerations that affect the coffee at the origin: the variety of coffee (e.g. Typica, Pacamara, Geisha) and the processing method (i.e. washed, pulped and natural). The variety defines chemical characteristics of the bean, and also the conditions in which it may be grown. Ideally, the fruit of the coffee bean should not ripen more rapidly than the ovum develops, otherwise the seed is lacking chemical complexity. Conversely, the fruit should be able to ripen in variable climate conditions thereby permitting the formation of the seed. Genetic variety hybrids are now ubiquitous and often feature the best of both of the parent varieties.

Irrespective of the variety, all coffee is processed in one of three general methods. The washing (or wet) process is the most common, and uses water to remove the skin and fruit of the cherry, leaving only the seeds to dry in the sun. The pulped (pulped natural) processing method removes the skin from the cherry, but does not fully remove the mucilage. This then forms a sun-hardened sugar-rich shell around the parchment (the thin protective layer for the seed). The natural process is simply the sun-drying of the coffee cherries with both seed and fruit intact.

Whilst the processing method used has a profound impact on flavour, the chemical mechanisms which dictate these differences are not well-understood. Regardless of the cherry processing method, after drying the beans are hulled, which exposes the bean by removing all the dry parchment, mucilage, or skin. The green coffee beans are then transported to roasteries, where the roaster develops a roast profile with the aim of producing the most flavoursome cup to their palate. The roast profile is a two variable problem of temperature and time, but due to limitations of roasting equipment and the inhomogeneity of heat transfer into green coffee, the development of a roast profile is more artistic than scientific, although there is certainly room for improvement in this area.

The roast profile shows the measured roaster temperature as the roasting progresses for the particular Tanzanian coffee listed in Table 1. The chemical constituents of roasted coffee depend on the temperatures of green coffee molecular decomposition. The generation and concentration control of these compounds is achieved through fine tuning of the roast profile. Whilst most compounds in roasted coffee are likely Maillard products, we present various pathways that permit the formation of acids, phenolic compounds, and also the cleavage of cellulose into sugar-related products like levoglucosan. The left-most process in Fig. 1 shows an example of decomposition of a chlorogenic acid (a group of molecules contributing to 66% of the acidity in green coffee) through low temperature hydrolysis, in which the formation of products depend on the water content within the seed.

Undoubtedly the extent and quality of extraction is dictated by the accessibility of the organic molecules contained within roasted coffee. Many factors influence the total amount, and relative proportions of the different organic molecules extracted, including temperature of brew, water chemistry and water-to-coffee ratio. Here, however, we are specifically concerned with physical method of increasing accessible surface area; i.e. the effect of the grinder.

Whilst routine in the pharmaceutical industry, it is challenging to both design and execute a grind to a homogeneous particle size in a coffee shop. This, however, is of critical importance in coffee brewing because variable accessible surface area causes the small particles to extract more rapidly relative to larger ones. As a result, brewing coffee is challenging with variable particle size, especially in espresso-style pressurised brews, where packing effects become important. Given the importance of particle size, we assess if bean origin, cherry processing method, and roast profile have any significant effect on the particle size distribution of the ground coffee.

Additionally, it was suspected that the temperature of the beans could also influence the bean fracturing dynamics, and therefore the final size distribution. Whilst ideally the beans and burrs would both be brought to the desired temperature, controlled active heating or cooling of the burrs is not presently feasible. To investigate the temperature effects we pursued the controlled cooling of the coffee itself. Given that many people store coffee in the refrigerator or freezer (if devoid of water vapour this is a chemically reasonable method of storage), we examine if varying bean temperature results in an observable modulation of grind distribution.

Resource: http://www.ncbi.nlm.nih.gov/

No comments:

Post a Comment